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1 INTRODUCTION

ABSTRACT

We present measurements of the velocity power spectrum and constraints on the growth rate
of structure fo g, at redshift zero, using the peculiar motions of 2062 galaxies in the completed
2MASS Tully-Fisher survey (2MTF). To accomplish this we introduce a model for fitting the
velocity power spectrum including the effects of non-linear redshift space distortions (RSD),
allowing us to recover unbiased fits down to scales k = 0.2 s Mpc~! without the need to smooth
or grid the data. Our fitting methods are validated using a set of simulated 2MTF surveys.
Using these simulations we also identify that the Gaussian distributed estimator for peculiar
velocities of Watkins & Feldman is suitable for measuring the velocity power spectrum,
but sub-optimal for the 2MTF data compared to using magnitude fluctuations dm, and that,
whilst our fits are robust to a change in fiducial cosmology, future peculiar velocity surveys
with more constraining power may have to marginalize over this. We obtain scale-dependent
constraints on the growth rate of structure in two bins, finding fog = [0.557015, 0.4070-19

in the ranges k = [0.007-0.055, 0.55-0.150] A Mpc~'. We also find consistent results using
four bins. Assuming scale-independence we find a value fog = 0.517)0%, a ~16percent
measurement of the growth rate. Performing a consistency check of general relativity (GR) and
combining our results with cosmic microwave background data only we find y = O.45f8:}?,
a remarkable constraint considering the small number of galaxies. All of our results are
completely independent of the effects of galaxy bias, and fully consistent with the predictions

of GR (scale-independent fog and y = 0.55).

Key words: cosmological parameters —large-scale structure of Universe — cosmology: obser-
vations.

scale structure (e.g. Alametal. 2017), Type Ia supernovae (e.g. Riess
et al. 2016) and weak gravitational lensing (Heymans et al. 2012)

The current cosmological paradigm consists of a flat, A cold dark
matter (ACDM) universe, whose geometry and structure evolved
according to the equations of general relativity (GR, Einstein
1916) and a matter-radiation tensor dominated by dark energy
and CDM. Recent observations of the cosmic microwave back-
ground radiation (CMB; Planck Collaboration XIII 2016), large-
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provide strong support for this cosmological model and confirm
the presence of both dark energy and dark matter. However, the
fact remains that there is currently no convincing physical expla-
nation for the nature of the ‘dark universe’. This indicates that
our current understanding of particle physics or gravitation is lack-
ing, and further tests or observations are required to determine
how.

One such test involves studying the relationship between density
and velocity in our universe. Assuming GR, the velocity with which
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an object at position x and scalefactor a moves, v(x, a), is related to
the velocity divergence field, 6(x, a), via the continuity equation,

V.v(x,a) =aH(a)f(a)d(x, a). 1)

On linear scales the velocity divergence field is equal (but opposite
in sign) to the density field §(x, a). The key parameters associated
with this equation are the Hubble parameter, H(a), which depends
on the expansion rate today and the relative densities of dark energy
and matter, and the linear growth rate f = dIlnD/dIna, which is
the change in the linear growth factor over time. The ACDM+GR
model provides strong predictions for these. In particular GR pre-
dicts that the growth rate is scale-independent and evolves with
time as f = Qu(a)’, where y ~ 0.55 and Q,(a) is the matter
density of the Universe (Linder & Cahn 2007). If the laws gov-
erning the relation between velocity and density in our Universe
differ from GR, one could expect to find some deviation in the
form of f.

Measurements of the density and/or velocity fields can be made
using galaxy redshifts. Inhomogeneities in the density field generate
gravitational potential wells and induce ‘peculiar’ velocities (PVs)
in the galaxies around them. Hence the redshift measured by an
observer z is a function of that caused by the expansion of the
universe zy and the PV of the observed galaxy along the line of
sight vpec,'

I+z=0+zg)1 4 vpec/0). @)

Because of equation (2), the peculiar motions of galaxies change
the observed clustering of galaxies compared to what would be
measured if their true distance were known. This effect is known
as redshift space distortions (RSD; Kaiser 1987), and can be ex-
ploited to obtain constraints on the growth rate. However, galaxies
are biased tracers of the matter density (Cole & Kaiser 1989; Fry &
Gaztanaga 1993) and on linear scales galaxy bias is exactly degen-
erate with the growth rate. This degeneracy is partially broken on
non-linear scales so the efficacy of RSD is limited by how far into
the non-linear regime the clustering can be successfully modelled,
or how well we know the galaxy bias. Even with this limitation,
RSD in the clustering of galaxies has been widely used to measure
the growth rate and provides some of the strongest large-scale tests
of GR to date (see e.g. Blake et al. 2011; Beutler et al. 2012; de la
Torre et al. 2013; Howlett et al. 2015; Alam et al. 2017).

Alternatively, if the distance to a galaxy is known then we can
evaluate zy, compare this to its measured redshift to calculate the
peculiar velocity and then use this to constrain the growth rate of
structure. This can be done by directly comparing the measured
linear velocity and density fields (Davis, Nusser & Willick 1996;
Branchini et al. 1999; Erdogdu et al. 2006; Davis et al. 2011a;
Branchini, Davis & Nusser 2012; Springob et al. 2014; Carrick
et al. 2015; Springob et al. 2016) or by looking at a distribution
of peculiar velocities and constraining their two-point functions
(Gorski et al. 1989; Jaffe & Kaiser 1995; Silberman et al. 2001;
Macaulay et al. 2012; Johnson et al. 2014). Methods of determin-

! Note that this is only true in the reference frame comoving with the observer
(usually called the CMB frame, where the observer’s own peculiar velocity
is zero), only in the case where we neglect the effects of gravitational lensing
caused by the same inhomogeneities that generate the peculiar motions and
only if the peculiar velocities are non-relativistic. For a detailed discussion
of how these effects change the measured redshift see for example Davis
etal. (2011b), Davis & Scrimgeour (2014) and Wojtak, Davis & Wiis (2015).

ing the true distance to a galaxy include the Tully—Fisher rela-
tion (TF; Tully & Fisher 1977), the Fundamental Plane of galaxies
(Djorgovski & Davis 1987; Dressler et al. 1987) and the use of
supernovae as standard candles (Phillips 1993).

There are several benefits to looking at the velocity power spec-
trum as opposed to measuring only the redshift-space galaxy clus-
tering or directly comparing the velocity and density fields. First,
galaxy velocities are expected to trace the underlying velocity
field exactly on large scales (Tinker, Weinberg & Zheng 2006;
Desjacques & Sheth 2010; Elia, Ludlow & Porciani 2012; Jennings,
Baugh & Hatt 2015). That is, we can obtain measurements of the
growth rate unsullied by the complicated way in which galaxies
populate the underlying matter field. Secondly, because the mea-
surement of the growth rate is largely independent of galaxy bias,
the velocity power spectrum can be measured on distinct scales,
providing constraints on the scale-dependence of the growth rate.
As the velocity field probes much larger scales than the density field
(which can be seen from the Fourier transform of equation 1), it can
also provide constraints on the growth rate of structure outside of
the survey window.

In this paper we use the distribution of peculiar velocities in the
completed 2MASS Tully—Fisher survey (2MTF; Masters, Springob
& Huchra 2008; Hong et al. 2013, 2014; Masters et al. 2014;
Springob et al. 2016; Hong et al., in preparation) to measure the
velocity power spectrum and constrain the growth rate of struc-
ture. We base our method on the work of Macaulay et al. (2012)
and Johnson et al. (2014), using more realistic simulations to pre-
cisely test the robustness of the fits, and add improvements to the
non-linear accuracy of the modelling. Compared to other mod-
ern, larger, peculiar velocity surveys such as SFI4++ (Springob
et al. 2007) and 6dFGSv (Springob et al. 2014), 2MTF benefits
from a near homogeneous full-sky coverage, better fractional dis-
tance error, a higher number density of nearby objects where the dis-
tance measurements are typically more accurate, and by default has
measurements (as does 6dFGSv) presented as ‘log-distance’ ratios
rather than velocities, which preserves the Gaussian nature of the
measurement errors. Additionally, larger compilations of peculiar
velocities, such as CosmicFlows-3 (Tully, Courtois & Sorce 2016),
could have systematic errors resulting from incorrect calibration
of the relative zero-points between the different sub-surveys which
would be difficult to test using mocks due to the large number
of selection functions that would have to be incorporated into
the simulations.

The layout of this paper is as follows. In Section 2, we present
the data we will use and a set of realistic mock surveys generated
to test the methods we will apply to the data. In Section 3, we detail
the theoretical model for the velocity power spectrum and how the
distribution of peculiar velocities can be used to measure this. We
apply the method to the mock surveys in Section 4, highlighting the
regime in which the model works, before applying this same model
to the data in Section 5. We will discuss and compare our results to
the predictions from GR and those from other surveys and methods
in Section 6.

Within this paper we adopt a flat, neutrinoless cosmological
model, based on the results of Planck Collaboration XIII (2016):
Qn = 03121, Q, = 0.0488, Hy = 67.51 kms~! Mpc~!, n, =0.9653
and og = 0.815. For this model, assuming GR, the expected value
of the normalized growth rate is fo's = 0.432. Note, however, that in
our measurements we do not make such an assumption. We simply
adopt a cosmological model, make an independent measurement of
the growth rate and then compare against the GR prediction.
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Figure 1. The sky coverage of the 2MTF survey in equatorial coordinates. The colour of the points represents the redshift of each galaxy. The 2MTF survey
is effectively full-sky except for the area within 5° of the galactic plane (grey shaded area). The dividing line at § = —40° indicates the region below which the
number density of the 2MTF survey falls by a factor of ~2 due to the different telescopes used to collect the data (cf. Fig. 2).

2 DATA AND SIMULATIONS

2.1 The 2MASS Tully-Fisher survey

The completed 2MTF survey (see Hong et al. 2014; Springob
et al. 2016 for work using earlier versions of the data and Hong
et al., in preparation, for the complete data set) is a survey of 2062
nearby, bright, spiral galaxies with measured redshifts and distances
derived using the TF relation. Targets for the 2MTF survey were se-
lected from the 2MASS Redshift Survey (Huchra et al. 2012) with
a limiting total K-band magnitude of 11.25, co-added axial ratio
b/a < 0.5 and redshift cz < 10000 km s~!. The photometric proper-
ties for the sample, namely the J-, H- and K-band total magnitudes,
co-added axial ratios and morphological classifications are taken
from the 2MASS Extended Source catalogue (Jarrett et al. 2000).
For the ~6000 galaxies satisfying these selection criteria, H1 mea-
surements are obtained for the brightest using a combination of
archival data, mainly from the Cornell H1 digital archive (Springob
et al. 2005) but also from other sources; data from the Arecibo
Legacy Fast ALFA survey (Giovanelli et al. 2005); and targeted
observations using both the Robert C. Byrd Green Bank Telescope
(GBT; Masters et al. 2014) and Parkes telescope (Hong et al. 2013).

Additional cuts are applied to those galaxies with H1 mea-
surements to improve the data quality. Only galaxies with
cz > 600kms~!, relative H1 line width error less than 10 per cent
and H1 spectrum signal to noise ratio of SNR > 5 were included in
the final 2MTF sample. The sky coverage and redshift distribution
of the 2062 galaxies in the final sample are shown in Figs 1 and 2,
respectively. Due to the different telescopes used to obtain the H1
measurements, in particular the use of only the Parkes telescope to
obtain measurements for galaxies with declination § < —40.0°, the

— Dec > —40.0°

102 @ — Dec < —40.0°
)
7
o 1073
=%
=
o™
<
N—r
'S 404

107}

0 2000 4000 6000 8000 10000
—1
cz(kms™ ")

Figure 2. The number density of galaxies in the 2MTF data set (solid lines)
and the average and variance of the mock 2MTF catalogues (points, detailed
in Section 2.2). Red lines and points show the distribution for galaxies
north of a declination of —40.0°, whilst blue shows those south of this.
This difference occurs due to the different instruments and telescopes used
to obtain the H1 line-widths, and the mocks are generated by subsampling
these two regions separately.

number density of targets is different above and below this declina-
tion. We do not correct for this in our measurements, but our results
are shown to be robust to the selection effects within the survey (see
Section 4).

Distance measurements to the 2MTF galaxies are obtained by
comparing the absolute magnitudes in the J, H and K bands to the
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Figure 3. Histograms of the log-distance ratios (left), errors in the log-distance ratios (middle) and relative error in the distances (right) for the 2MTF galaxies.
The upper row shows the data before the correction for Malmquist bias, the bottom row is the data after the correction was applied. Different colours show the
data from the three separate fits to the TF relation for the three photometric (J, H and K) bands.

absolute magnitudes inferred from the TF relation. In the 2MTF
catalogue, distances are presented as log-distance ratios, Ad, the
logarithm of the ratio of the distance calculated using the mea-
sured redshift, D, and the true comoving distance, Dy. The Tully—
Fisher relation was fitted separately for these three bands to a dis-
tinct sample of 888 cluster galaxies using a revised version of the
method in Masters et al. (2008). The method for calculating the
absolute magnitude of each galaxy, including internal dust and k-
corrections is also detailed in Masters et al. (2008). The log-distance
ratio can be calculated from the difference in absolute magnitudes
AM = M,y — M(W), where M., is the observed corrected absolute
magnitude and M(W) is that inferred from the TF relation, via

Ad =1 D. AM 3)
= 10 = ——
¢\ Dy 5

Hence if the errors in the distance measurements are log-normal,
the errors in the log-distance ratio are Gaussian. However, the exact
conversion from log-distance ratios to a peculiar velocity is gen-
erally non-linear and gives a non-Gaussian PDF for the peculiar
velocity (cf. Johnson et al. 2014; Springob et al. 2014; Scrimgeour
et al. 2016). We demonstrate that there are estimators and variable
transformations that allow the Gaussian nature of the measurements
to be retained and related to the peculiar velocity (see Section 3).
Finally, the distance measurements are corrected for homoge-
neous Malmquist bias (Malmquist 1924), arising from the fact that
objects at higher redshift probe larger cosmological volumes, and
are often intrinsically brighter than their nearby counterparts to be
measurable. This is done using the method described in Springob
et al. (2016). Histograms of the log-distance ratios and their er-
rors in the J, H and K bands before and after the correction for
Malmgquist bias are shown in Fig. 3. As expected the distribution
of log-distance ratios is generally Gaussian, with typical scatter

0.074 and 0.085 before and after the correction for Malmquist bias.
The average error given to the log-distance ratios is 0.097, which
has contributions from observational errors and the intrinsic scatter
in the TF relation. The latter component dominates the error bud-
get, as can be seen comparing the mean error and the scatter. The
separate measurements in the three photometric bands are highly
consistent (and highly correlated as shown in Section 2.1.1). The
measurements with and without the correction for Malmquist bias
are also highly consistent, with a small shift in the log-distance
ratios towards zero when the Malmquist bias is removed. Overall,
the typical error on the log-distance ratios, from both observational
and intrinsic sources, is ~7 per cent. Although the corresponding
linear distances are non-Gaussian and their error cannot be eas-
ily quantified, this roughly corresponds to a ~22percent linear
distance error.

2.1.1 Using the 2MTF distance measurements

Three separate distance measurements were obtained for each
galaxy using the K-, H- and J-band photometry. As the photometry
in these bands comes from the same survey and each of the template
relations uses the same H1 line-width as a measure of the velocity
dispersion, we expect these distance measurements to be highly
correlated. To explore this we calculate the cross-correlation coef-
ficients from the data itself, averaging over all 2062 galaxies in the
final 2MTF sample. As expected the cross-correlation coefficients
between the three bands are very high, {pxu, pxs, pus} = {0.983,
0.981,0.993} and {0.986, 0.978, 0.985} for the measurements with
and without the Malmquist bias correction, respectively.

We test that the correlation coefficients for the 2MTF data set do
not vary as a function of redshift by computing them in four equally
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Table 1. The number of galaxies removed due to the 40 -clipping for the
three individual bands and when using the ‘minimum error’ measurement
for each galaxy, and for measurements with and without the correction for
Malmquist bias. The total number of galaxies before clipping is 2062.

K band H band J band ‘Minimum error’

With Malmquist 15 17 14 19
bias correction
Without Malmquist 11 13 10 14

bias correction

0.0

0i6 OiS 110 1i2 1;4 116 1i8 2;0
log(D;)

Figure 4. A plot of the measured distance of each galaxy from the Tully—

Fisher relationship against the distance inferred from its redshift. For each

galaxy we plot the Malmquist bias corrected distance with the smallest error.

The colour of each point signifies the deviation from the mean logarithmic

distance ratio in units of the standard deviation. The open squares are points
removed by the 4o -clipping.

spaced redshift bins, and do not vary when we look at galaxies above
and below a declination of —40°. In all cases we find negligible
differences (<10 per cent of the statistical error) between the cross-
correlation coefficients compared to the error on the coefficients
themselves, estimated using bootstrap sampling with replacement.

As the cross-correlation coefficients are so high, treating these
measurements as independent and combining them is certainly in-
correct. Instead we perform separate fits of the velocity power spec-
trum for each of the bands, and also use the single most precise
measurement for each galaxy. As the measurements are so corre-
lated the choice of which measurement to use is essentially arbitrary,
so choosing the one with the smallest error is a reasonable choice.

When using the measurements to fit the velocity power spectrum
we reduce the effect of outliers by removing galaxies that lie greater
than 4o from the mean logarithmic distance. Based on the number
of galaxies within the 2MTF sample, we do not expect any to lie
greater than 40 from the mean value; however, there are some small
number that do, likely due to systematics in the measurement of
the photometry or H1 line width, galaxies with unusual properties,
or due to underestimation of the statistical error. Our ‘clipping’
approach is justified as we expect all galaxies to be drawn from the
same underlying distribution and their peculiar velocities to all be
driven by the same growth rate of structure.

The number of galaxies removed by the 4o -clipping is given in
Table 1. As an example of the galaxies that we remove during this
procedure, Fig. 4 shows the logarithmic distance of each galaxy
as measured from the Tully—Fisher relation against that inferred

2MTF velocity power spectrum 3139

from its redshift using our fiducial cosmology. For each galaxy we
plot the measurement with the correction for Malmquist bias and
the minimum error. We expect galaxies to lie about the 1:1 line,
with some scatter due to their peculiar velocities. The 4o -clipping
removes obvious outliers from this relation which would bias our
measurement of the growth rate.

2.2 Mock surveys

In order to test the robustness of our method for fitting the veloc-
ity power spectrum, we generate a set of mock 2MTF data sets.
The known input cosmology of a simulation allows us to test the
deviation of our best-fitting model from the input and quantify
the expected systematic errors in our measurement from the data.
For this purpose we start with a z = 0 dark matter field from the
Synthetic UniveRses For Surveys (SURFS) simulation suite (Elahi
et al., in preparation) which contains 20483 particles in a box of
9004~ Mpc on a side. This simulation has a mass resolution of
~7.4 x 10° "' M@. The cosmology of the SURFS simulation
matches our fiducial cosmology based on Planck Collaboration XIII
(2016). This then allows us to test that our method is robust to the
underlying cosmology. The simulation is run using the GADGET-2
simulation code (Springel 2005). Haloes and subhaloes are identi-
fied from the dark matter field using the code vELocIRAPTOR (Elahi,
Thacker & Widrow 2011). This code first performs a 3D Friends-
of-Friends algorithm (Davis et al. 1985) on the dark matter, linking
together particles based on their spatial proximity, before identifying
substructures using a 3D phase-space Friends-of-Friends algorithm.
This second step allows it to identify substructures which are dy-
namically distinct from the smooth, mean background of the parent
halo. Haloes and subhaloes are identified using a minimum of 20
particles; hence, the Friends-of-Friends mass resolution for a halo
in our simulation is ~1.5 x 10" h~! M. For more details on the
halo catalogues see Elahi et al. (in preparation).

We expect the 2MTF sample, consisting of large, bright spiral
galaxies, to reside primarily in large mass haloes. For the 2MTF
mocks, we simply require a simulation with a large enough vol-
ume to capture the impact of long wavelength modes on our mea-
surements within the 2MTF survey volume and with high enough
resolution that we accurately recover the typical haloes in which a
2MTF galaxy resides. The volume of our simulation is much larger
than the maximum extent of the 2MTF data and, given the method
we use to generate our 2MTF mocks in the following sections, only
10 per cent of our mock galaxies are found in haloes with less than
50 particles, which are reasonably well converged when compared
to other, higher resolution simulations in the SURFS suite. Hence
we consider our mocks robust to the volume and mass resolution of
the simulation.

2.2.1 Populating the haloes with galaxies

From the catalogue of haloes and subhaloes, we produce a suitably
realistic population of 2MTF galaxies using the Subhalo Abundance
Matching technique (Conroy, Wechsler & Kravtsov 2006). We place
a single object at the centre of each halo/subhalo with a luminosity
drawn from the late-type K-band luminosity function of Kochanek
et al. (2001). The abundance matching is performed by drawing a
number of luminosities equal to the number of haloes/subhaloes,
rank ordering this list alongside the maximum circular velocity of
each structure and assigning these one-to-one, such that the halo
with the highest circular velocity contains the largest luminosity,
and so on.
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The luminosity function from Kochanek et al. (2001) is a
Schechter function (Press & Schechter 1974) with M; = —22.98,
a=—0.87andjig = 1.01 x 1072 h3 Mpc~ fit to photometry from
2MASS, which is also the parent sample from which all 2MTF
galaxies are drawn. Springob et al. (2016) found that the luminosity
function of the 2MTF data has a slightly steeper slope than that of
Kochanek et al. (2001) (¢ = —1.1 rather than « = —0.87), likely due
to the additional morphological cuts placed on the 2MTF sample.
Whilst this difference in slope is ~20, the effect (When changing the
slope but keeping the other parameters fixed) on the relative assign-
ment of luminosities to haloes is small and as Springob et al. (2016)
do not evaluate the normalization of their luminosity function we
opt to use the fit from Kochanek et al. (2001) instead.

2.2.2 Survey selection effects

Once we have populated a simulation with galaxies we then place
a set of observers in the box and for each observer apply a set of
selection effects to reproduce the 2MTF data. We use eight ob-
servers equally spaced in the full simulation volume. Even though
these mocks are drawn from the same simulation, we treat them as
independent in this work. The 2MTF survey extends for roughly
~100 /=" Mpc in each direction, so we can place the eight mocks
such that they are always more than 250 ~~! Mpc from each other
in any direction. Hence we expect the different mocks to only be
correlated on the largest scales, and even then only slightly. For
each observer we reproduce the 2MTF selection function by doing
the following:

(i) Convert the comoving distance and peculiar velocity of each
galaxy to a redshift in the observer’s rest frame using equation (2).

(i) Remove all objects with cz < 600km s7! and ¢z >
10000 kms~'.

(iii) Calculate the apparent K-band magnitude of each object
seen by the observer and apply a cut of K., < 11.25.

(iv) Convert each remaining galaxy’s Cartesian coordinates to a
Right Ascension and Declination. From these compute the galactic
latitude, b, and remove all galaxies with |b| < 5°. This roughly
mimics the survey ‘mask’ created by the Zone of Avoidance around
the Galactic plane.

(v) Finally, subsample the galaxies so that they fit the redshift
distribution of the data. We subsample the regions of the sky above
and below a Declination of 6 = —40.0° separately. For each of these
regions we subsample based on a smooth spline fit to the number
of objects in redshift bins (as opposed to the true number of objects
in the 2MTF sample), so as not to remove too much of the naturally
occurring substructure along the line of sight in each mock.

The number density of objects in the mock surveys for the two
distinct sky areas is compared to the 2MTF data in Fig. 2. We see
a good broad agreement between the two, with small differences
occurring due to the natural large-scale structure along the line
of sight in the 2MTF data. The number density of objects below
8 = —40.0° is noticeably less than at higher latitudes for all redshifts
due to the different telescopes available to use to obtain the H1line-
widths in these two regions.

2.2.3 Error assignment

We assign measurements to each of the mock galaxies in a way
which also reflects the data. Log-distance ratios are calculated

for each of our mock galaxies based on their measured red-
shifts with respect to the observer and their true comoving dis-
tance. Gaussian errors are then assigned to these mock galaxies
by fitting the errors in Ad from 2MTF as a function of red-
shift. We use the minimum error across the three photometric
bands, as described in Section 2.1.1. There are two sets of 2MTF
Ad measurements for each photometric band and hence for our
‘minimum error’ measurements: those without any correction for
Malmgquist bias and those after a correction has been applied based
on Springob et al. (2016). We fit separate relations to the errors
on the Ad measurements for both of these cases and find best-
fitting relations of o (A,) = 0.118(£0.001) — 1.469(£0.048)z and
o(Ag) =0.116(£0.001) — 1.322(40.049)z for the errors with and
without the correction for Malmquist bias, respectively. The un-
certainties for these fits are calculated using 10 000 iterations of
bootstrap resampling with replacement.

We also find considerable scatter around this best-fitting model.
To improve the realism of our mocks we quantify this scatter and
incorporate it into our error assignment for the mock galaxies.
We split the data into redshift bins of width cz = 1000 kms™!
and calculate the standard deviation of the data about the best-
fitting, which we call € to avoid confusion with the error of the
log-distance ratio itself. We then fit this as a function of red-
shift too and find € = 0.020(4+0.001) — 0.236 (£0.059)z and
€* =0.020 (£0.001) — 0.211 (£0.058)z for the scatter in the errors
with and without the correction for Malmquist bias, respectively.
Overall, to test our assumption that the errors on the 2MTF data can
be well represented by a Gaussian distribution with mean o (A,)
and standard deviation € (which vary with redshift) we perform a
two-sample Kolmogorov—Smirnov test. For each redshift bin we
draw a number of samples equal to the number of data points from
the corresponding Gaussian. We repeat this multiple times and find
that the data support our assumption.>

This process is demonstrated in Fig. 5, where we plot the
Malmquist-bias corrected errors in the 2MTF data as a function
of redshift, alongside the best-fitting relationship. We also plot the
mean and variance of the data in redshift bins, and the scatter and
subsequent redshift as a separate panel. The 2MTF data points are
coloured based on their actual log-distance ratio to identify any
additional trends as a function of this measured variable. We find
some small evidence for a trend with log-distance ratio, with larger
ratios corresponding to larger errors; however, this is much less
significant than the trend in the mean and scatter of the errors as a
function of redshift and so we do not account for this. We also show
the points that were removed due to the 4o -clipping described in
Section 2.1.1, which are not included when we fit the errors as a
function of redshift.

From Fig. 5 we see that the errors on log-distance ratios decrease
with redshift. This is due to an implicit selection function within
the 2MTF; only the most H1 luminous galaxies, with the largest
rotation widths, can be detected at high redshift. The scatter in the
TF relation was found to be well correlated with the H1 line width,
with higher line-widths having lower scatter (Hong et al. 2014).
Hence galaxies at higher redshift have lower intrinsic scatter about
the mean TF relation and smaller errors.

After obtaining the best-fitting relationships the error on each
mock galaxy is generated as a random number drawn from a

2 More specifically, performing this test 1000 times we find p-values greater
than 0.1 in 935 and 647 cases for the data/fits with and without the correction
for Malmquist bias, respectively.
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Figure 5. The errors in the log-distance ratios of the 2MTF data (cir-
cle points), colour-coded based on the log-distance ratio itself and plotted
alongside the best-fitting model (black line) used to generate the errors in the
mocks. The blue squares show the mean and standard deviation of the data in
bins of width ¢z = 1000 km s~!. The bottom panel shows these standard de-
viations themselves as a function of redshift alongside a best-fitting model,
which highlights how the scatter about our best fit for the errors also has
a slight trend with redshift. We use a combination of these two best-fitting
lines to estimate the mean and variance of the Gaussian PDF from which the
error on a galaxy with some redshift is generated. The colour-coding of the
points suggests that any correlation between the errors and the log-distance
ratios is small, and so is not accounted for in this work. The open triangles
show points removed by 4o -clipping which are not used in the fits.

Gaussian distribution with mean o (Ad) and standard deviation €.
The errors are then used to perturb the measurements for each galaxy
from its true value, again assuming a Gaussian distribution.

3 THEORY AND MODELLING

3.1 Gaussian theory

In order to extract a measurement of the velocity power spectrum
from the 2MTF data we use the method of Macaulay et al. (2012)
and Johnson et al. (2014). All modelling is done at z = 0, which is
close to the mean redshift of the 2MTF data. Our measurements of
the velocity field are in the form of line-of-sight peculiar velocities
s(x) = v(x) - 7. Under the assumption that the velocities v(x) are
drawn from a Gaussian distribution with zero mean, the probability
of observing a set of line-of-sight peculiar velocities s is given by

_ 1 L vy
L) = 2n|c(0)|exp( 2s (o)) s). 4)

The velocity covariance matrix C for this set of observations de-
pends on the underlying cosmological model and parameters 6, and
the relative positions of the galaxies in the data vector s. For two
galaxies, i and j, we have C;; = (s;(x;)s;(x;)). From equation (4)
we can calculate the likelihood of measuring our set of peculiar ve-
locities given some underlying cosmological model. Using Bayes’
theorem, we can then calculate the posterior distribution of a set
of cosmological parameters given our peculiar velocity data set,
the likelihood in equation (4), and the priors and method given in
Section 3.5.

Theoretical modelling of the correlations between velocities in
disparate locations is typically done in terms of the velocity power
spectrum P,,(k, a), or the velocity divergence power spectrum
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Pyy(k, a). The relationship between the two on linear scales at
z=01is (e.g. Coles & Lucchin 1995; equation 18.1.13)

Hy (k)2
P, (k) = <%) Pyy(k). (5)

This relationship between the velocity power spectrum and velocity
divergence power spectrum follows from equation (1). Our likeli-
hood evaluation requires the covariance matrix in real-space, but we
can write this in terms of the velocity power spectrum by first using
Fourier transforms to relate it to the peculiar velocities in k-space,

. &K
eikxi
2m)? 2m)?
then substituting the line-of-sight PVs for the underlying velocities
and writing their variance in terms of the velocity power spectrum.

Separating the resulting integral into radial and angular components
we find

Cij(xi,x)) = e KT (s (ks k)).  (6)

H2
Cij(xi,x;) = 27“2 / dkf2 (k) Pog (k, a)W (x;, x ;, k), ©)
where
Ph exn ez
Wk, x;,x;)= Hel (& - k)X - k). (3)

Ma, Gordon & Feldman (2011) give an analytic expression for the
window function in terms of the comoving distance to the two galax-
ies, their radial separation A;; = |r; — r;| and the angle between
them o;; = cos™!(&; - X)),

Wk, x;,x;) = 1/3[jo(kA;;) — 2ja2(kA;;)]cos(e;)
+ A ok Ajj)xixsin®(a)). ©)

Given a sample of galaxies with measured positions, redshifts
and peculiar velocities, we can apply the following steps.

(i) Adopt a given cosmological model to convert the galaxy co-
ordinates to Cartesian coordinates, and evaluate the velocity diver-
gence power spectrum and the necessary prefactors in equation (7).

(ii) Compute the covariance matrix for all possible galaxy pairs.
Evaluating the integral in equation (7) requires choosing appropriate
integration limits. Theoretical models of the velocity divergence
power spectrum will break down at some non-linear scale. Including
these scales in the integral can bias results, so the range of scales we
choose to integrate over and fit against must be chosen appropriately.

(iii) Calculate the likelihood for the cosmological model based
on the covariance matrix and the peculiar velocity measurements.

Iterating over these steps allows us to evaluate our posterior.

In practice, there are a few caveats with this approach. We first
require a way to incorporate measurement errors into our likelihood
calculation, which in most applications is not trivial. We also need a
method to calculate the velocity divergence power spectrum that is
accurate to the scales we wish to fit against. If this is not available, we
can suppress non-linearities in the data and use a more linear model.
Ideally, we try to achieve some balance between these two options.
Finally, we need to include marginalization over the effects of zero-
point offsets, or a monopole, in the peculiar velocity measurements.
Methods to include these are summarized in the following sections.

3.2 Measurement errors

Measurements of the peculiar velocities of galaxies are subject to
considerable statistical errors, which must be incorporated into our
likelihood analysis. As long as the distribution of the measured
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values about the true underlying peculiar velocities can be written
as some probability distribution function (PDF), we can calculate
the likelihood of measuring a particular configuration of peculiar
velocities as a convolution between this PDF and the multivariate
Gaussian likelihood arising from the theory, equation (4). This state-
ment is true in general, however writing an analytic formula for the
result of this convolution is particularly difficult (or may even yield
an answer with no closed form) unless the measurement errors are
also Gaussian. In this case the likelihood of interest is a convolution
between the Gaussian theory and a multivariate Gaussian describ-
ing the measurement errors, the result of which is simply another
Gaussian, albeit with a different mean and variance.

For Gaussian distributed errors, if we assume that the measure-
ments are unbiased (in that the measurement PDF is centred on the
true underlying value) and independent (such that the covariance
matrix of this PDF is diagonal) we find that the joint likelihood in-
cluding both the theory and measurement errors is simply a modified
version of equation (4),

1 1
L£O)= ——— ——sTx@)'s ), 10
0) 2ﬂ|2(0)|GXP( 7S ) S) (10)
where
%y = Cij + 078, 1n

and o; is the error on the measurement for galaxy i.

Unfortunately, the errors on peculiar velocities are generally log-
normal, not Gaussian, and possess significant bias and skewness.
One way of dealing with this could be to write down a form of the
Non-Gaussian measurement PDF that can still be convolved ana-
lytically. Though of great interest, this is a significant undertaking
and beyond the scope of this work.? A simpler method is to perform
a change of basis to a variable that has a Gaussian distribution.
Watkins & Feldman (2015) and Johnson et al. (2014) present two
such transformations, which will be covered separately.

In either case, in this work the error on each galaxy is assumed to
come from a combination of observational uncertainty o obs, ;, Which
also includes the scatter in the Tully—Fisher relation, and a stochastic
noise arising from non-linear motions o, ;. This stochastic noise
is typically of the order of 200-300kms~! (Masters et al. 2006;
Scrimgeour et al. 2016), but we include it as a free parameter in our
likelihood evaluation rather than fixing it to a specific value. Hence
the total error on each galaxy is 0 = o5, + 07,

3.2.1 Gaussian estimator for peculiar velocities

Watkins & Feldman (2015) (WF15) present an estimator for the
peculiar velocity of a galaxy based on the logarithmic distance ratio
that is unbiased for galaxies with peculiar velocities much less than
their redshifts. They show that their estimator

CZm,i

In(10)Ad;, 12
% o (10) (12)

S; =
also has a Gaussian PDF. z, ; is a corrected redshift for galaxy
i which includes the effects of cosmic acceleration. Davis &

3 To the best of the author’s knowledge a closed solution for the convolution
between a multivariate Gaussian and a second multivariate PDF does not
exist for Lognormal distributions. However certain classes of multivariate
Skew-Normal distribution (see e.g. Azzalini & Capitanio 2009) can be con-
volved with a Gaussian PDF and result in another Skew-Normal distribution.
It is possible that this could then be used to evaluate the likelihood for a
given data set.

Scrimgeour (2014) give an expression for this in terms of the de-
celeration parameter, ¢

Zn =2 [141/2(1 — go)z — 1/6 (2 — q0 — 3¢3) 2] - (13

For observational errors in the log-distance ratio a simi-
lar transformation can be applied such that o? = [czn/(1 +
zw)P(n 10263, ; + o2,

All the galaxies in the 2MTF sample have redshifts larger than
600km s~! which is expected to be equal or greater than the typ-
ical peculiar velocity for a galaxy. However, while this estimator
should be applicable to the 2MTF sample, it may be inaccurate for
the lowest redshift galaxies, or a small number of galaxies with
extraordinarily large PVs. This will be tested using the mock cata-

logues in Section 4.

3.2.2 Theory for magnitude fluctuations

An alternative variable we can use is the fluctuation in apparent
magnitude caused by the peculiar motion of an object, §m, which
is that used by Johnson et al. (2014). The relation between the
log-distance ratio and a magnitude fluctuation is the same as that
given for absolute magnitudes in equation (3). Using this variable
requires us to rewrite the equation for the covariance matrix for the
velocities in terms of apparent magnitude fluctuations.

The derivation of how an object’s peculiar velocity changes its
observed magnitude has been shown many times in the literature
(see for example Hui & Greene 2006; Davis et al. 2011b; Johnson
et al. 2014; Huterer, Shafer & Schmidt 2015) and so will not be
repeated here. Ultimately, ignoring effects beyond first order in
perturbation theory, and ensuring that we work in the CMB frame,
the change in apparent magnitude induced by an object’s peculiar
velocity is

me_ > 1Fz o (14)
In10 H(z)x(z)
H(z) is again the Hubble parameter, this time at the redshift of the
galaxy, and y (z) is the comoving distance to this galaxy.

Combining equations (3) and (14), the covariance matrix for log-

distance ratios between two galaxies is then

C.A.dz( 1 )2( 1+z )( I+z; )C“ (15)
i In 10 H(z)x(z)) \Hz)x(z)) 7

where Cj; is the covariance matrix as defined in equation (7). When
using this parametrization, we use ém as our data vector in equa-
tion (10) rather than s, and we also have to transform the variance
in the measured velocities due to the stochastic noise, such that
07 g = Ol + (N 10)2((1 + 2)/(H(z)x (21))*02,.

The derivation of the prefactor to convert the covariance matrix
for peculiar velocities into that of log-distance ratios relies on a
Taylor expansion in log(l + x), where x depends on the peculiar
velocity and distance of each galaxy. This expansion only converges
for x « 1, and investigation of this term shows that this may not be
satisfied for nearby galaxies with large peculiar velocities. As with
the WF15 estimator, we will test the validity of this method using
our mock catalogues in Section 4.

3.3 Modelling the velocity divergence power spectrum

In this work, we use a model velocity divergence power spec-
trum generated using the implementation of two-loop renormal-
ized perturbation theory (RPT; Crocce & Scoccimarro 2006a,b,
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2008) found in the copTER numerical package (Carlson, White &
Padmanabhan 2009). This takes as input a fiducial cosmology and
a corresponding linear matter transfer function normalized to unity
at k — 0, which we generate using camB (Lewis, Challinor &
Lasenby 2000; Howlett et al. 2012). Carlson et al. (2009) found that
two-loop RPT was able to recover the real-space density—density,
density—velocity and velocity—velocity power spectra of a redshift
7z =0 ACDM universe to within 1 per cent up to k = 0.08 2 Mpc~!
and ~8, 10 and 15 per cent respectively up to k = 0.2 hMpc~'. Im-
proved accuracy could be obtained using emulators of the power
spectrum (e.g. Agarwal et al. 2014; Heitmann et al. 2014); how-
ever, these currently only exist for the matter power spectrum, not
the velocity divergence power spectrum. As the accuracy of our
theoretical power spectrum breaks down as we include more non-
linear scales in the model, so we must either restrict our fits to
scales where these inaccuracies remain small, possibly sacrificing
constraining power, or suppress non-linearities in the data.

On top of this, our fitting of the velocity power spectrum requires
us to estimate the distance to each galaxy in order to compute the
window function and in turn the covariance matrix. Although we
have measurements in the 2MTF data of the distance to each galaxy,
these contain considerable statistical error. Instead we convert the
measured redshift of each object to a comoving distance, which
contains contributions from the peculiar velocities themselves. This
gives rise to non-linear RSD in our model, which would not occur
if we used the true distance to each galaxy. As with the numerical
inaccuracies in the modelling, these can be suppressed or they can
be included in the model itself.

In this section we will present two methods to overcome these
non-linearities: First, by including an additional free parameter to
model non-linear RSD on small scales, and secondly by gridding
the data to smooth out non-linear effects. This latter method was
adopted by Johnson et al. (2014). As with our choice of variable in
the previous section, we will justify the choice of method used to
model the velocity power spectrum when fitting the 2MTF data by
testing these different schemes using the mock catalogues.

3.3.1 Including non-linear RSD

Our first method to include non-linear effects in the model is to
include an additional damping of the velocity power spectrum of
small scales, mimicking that caused by non-linear RSD. We adopt
the same parametrization used by Koda et al. (2014) and Howlett,
Staveley-Smith & Blake (2017) in their model of the velocity power
spectrum,

Hy f (k)
k

2
Py (k) = ( ) D (k, 0,) Pos (k). (16)
Comparing this with equation (5) highlights the inclusion of the
non-linear damping term D, (k, o,), which contains the additional
free parameter o ,. The functional form

D,(k,o,) = sinc(ko,) (17

was found by Koda et al. (2014) to be a good match to haloes in a
variety of mass bins from the GiggleZ simulation (Poole et al. 2015).
In all cases this model of the velocity power spectrum provided
a good fit for k < O.ZhMpc*I, with the best-fitting value of o,
showing some slight dependence on halo mass between the values
of o, = 13.0-15.5 h~! Mpc, with higher values corresponding to
more massive haloes, and hence more non-linear damping of the
velocity power spectrum.
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Although small-scale damping due to RSD is typically a function
of both the scale k and the angle between the k-vector and the
observer’s line of sight (typically denoted 1), no evidence for such a
dependence was found by Koda et al. (2014). Because this damping
model only depends on scale, including it in the covariance matrix
is trivial. In this case, equation (7) becomes

2

H,
Ciw ) = 3% [ @k Ptk @)

x DXk, o)W (x;, x;, k). (18)

3.3.2 Gridding the data

Alternatively, or in addition to including the non-linear damping
caused by RSD in the model, we can suppress non-linearities in the
data by smoothing the measurements on some grid and calculating
the theoretical covariance at the cell centres. This has the benefit
of also potentially reducing the size of the covariance matrix we
need to compute from the data. This method was introduced and
tested by Abate et al. (2008) and Johnson et al. (2014) and found to
produce unbiased results for suitable choices of grid size and fitting
range.

When gridding the data, galaxies are assigned to the grid point.
The mean of their log-distance ratios is taken as the value in the cell.
As we are treating these measurements as uncorrelated, we take the
error in cell #, 0 giq, ;, as the standard error on the mean

1
Opiai = — > 070, 19)
L

where #; is the number of galaxies in that cell, and ®; = 1 if galaxy
jis in cell i and O otherwise.* The error added to each cell due to
random non-linear motions is similarly calculated.

When gridding the data we are effectively suppressing non-linear
power. This has to be reflected in the calculation of the covariance
matrix. By taking the Fourier transform of the gridding kernel ®;
and angle-averaging this we obtain a function I'(k) that can be
used to suppress the non-linear power spectrum when calculating
equation (7). The equation for the covariance matrix of the gridded
data is then

Ti H2 S
CHxi x)) = o / dk (k) Pog(k, )T (k)W (x;, x ;. k), (20)

where

1 7T 27
I'k)=— / / déd¢ sinc(k, )sinc(k,)sinc(k;),
47t 0 0 .

k. = (kL/2)sin(@)cos(¢),
ky, = (kL/2)sin(@)sin(¢),
k., = (kL/2)cos(9), 21)

and L is the edge-length of the gridcells we are using.

4 Note that this is slightly different to the definition used in Abate et al.
(2008) and Johnson et al. (2014). They use the average error in each cell,
divided by nil/ % to account for the error reduction due to averaging, i.e.
Ogrid,i = ”% > j 0j0;;. This is only coincident with the standard error on

the mean when there is a single galaxy in the cell, or the error on each
galaxy is the same. This is not true for the 2MTF sample, but in practice
the differences in the error in each cell when using the standard error on the
mean, or when averaging the error as in Abate et al. (2008) and Johnson
et al. (2014), are small.

Downl oaded from https://acadeni c. oup. com mras/article-abstract/471/3/3135/ 3873951/ 2MIF- VI - Measuri ng-t he-vel oci ty- powerMNeM%"ﬂl’ 3135-3151 (2017)

by University of Newcastle user
on 04 Cctober 2017



3144 C. Howlett et al.

The gridding of the data makes the implicit assumption that the
PVs inside each cell are well described by a continuous field. How-
ever this becomes less valid as the number of galaxies in each cell
becomes small, which can in turn bias results. Abate et al. (2008)
proposed and tested a correction for this, where the diagonal ele-
ments of the covariance matrix are updated as

Cigirid N Cigirid + (Cii _ Cﬁrid) /ni, (22)

and C;; is the standard ungridded covariance matrix. In the limit of
one galaxy in a cell the gridded covariance matrix returns to the
standard covariance matrix. No such correction was found to be
necessary for the off-diagonal elements of the covariance matrix as
these are negligible on small scales.

3.4 Velocity monopoles

The final addition to the theoretical modelling is an analytic cor-
rection for the effect of a monopole in the velocity field caused by
an offset in the zero-point of the TF relation, or local small-scale
inhomogeneities in our local universe. Howlett et al. (2017) show
that this acts as a shot-noise contribution to the power spectrum, but
is unlikely to cause significant bias in measurements of the growth
rate as this is much smaller than the typical statistical error in the
distances, which also acts as shot noise. As the 2MTF survey is
homogeneous and approximately full-sky, we also expect it to be
less affected by a zero-point offset than other surveys. None the
less, Johnson et al. (2014) showed that analytically marginalizing
over this is trivial, and so we include this in our analysis.

If we define the velocity monopole as a constant additive term
to the peculiar velocities or magnitude fluctuations of the 2MTF
galaxies, drawn from a Gaussian prior with zero mean and standard
deviation o, we can analytically marginalize over the unknown
monopole by modifying equation (10) (Bridle et al. 2002). The
likelihood function we calculate becomes

oy LHE To]) LT 50! 23
( )—Wexp (—ES m(0) s), (23)
where

o2x ITx!
mel — 271 Y (24)

41Tz e

and I is a vector of ones. The expression is similar when using
magnitude fluctuations as our variable. In all cases we use a value
of o, = 0.2 for our prior, but find that the exact value has little effect
on our results (cf. Section 4).

3.5 Free parameters and application

In this section we have detailed the theory behind the velocity power
spectrum and how a sample of PVs can be used to measure this and
constrain the growth rate. One caveat is that in modelling the covari-
ance matrix the value of the growth rate is exactly degenerate with
the intrinsic amplitude of the velocity divergence power spectrum,
i.e. increasing the amplitude of the velocity divergence power spec-
trum has the same effect on the covariance matrix as increasing f.
We can parametrize the amplitude of the power spectrum using og,
the linear matter variance in spheres of radius 8 /! Mpc. Our for-
malism is then sensitive to the well-known parameter combination
fos. This parameter combination is widely used in RSD studies;
Song & Percival (2009) show it can be used to constrain the prop-
erties of dark energy and gravity even without explicit knowledge
of og.

On top of fog, we also have the free parameter o, which
parametrizes the non-linear velocity dispersion of the galaxies, and
o, when we include non-linear RSD in our model. We will also
perform scale-dependent fits of the growth rate by calculating the
integral for covariance matrix using non-overlapping k-bins, with a
different value of fog for each bin. This makes the assumption that
the value of fog is constant or does not vary widely across the bin,
but allows us to look for general scale-dependence in the growth
rate on large and small scales.

All of our fits are obtained with Markov chain Monte Carlo
(MCMC) sampling using the publicly available EMCEE routine
(Foreman-Mackey et al. 2013). We do not allow fog to vary in
such way that we choose unphysical negative values and use flat
priors of 0Okms™' < o, < 1000kms~" and 0.22~'Mpc < 0, <
25 h~! Mpc. This is chosen based on the fits to the GiggleZ simu-
lation (Poole et al. 2015) by Koda et al. (2014). Without gridding,
the covariance matrix is computationally demanding, so when fit-
ting the velocity power spectrum with the extended non-linear RSD
model we pre-compute 125 covariance matrices between our prior
with width Ao, = 0.2h~! Mpc, and linearly interpolate between
these for our likelihood calculation.

When quoting our results we use the maximum likelihood value
and our lo errors are calculated from the equal likelihood bounds
containing 68 per cent of the likelihood.

4 TESTS ON SIMULATIONS

To validate our fitting method before applying it to the data we first
fit our eight mock 2MTF surveys. The questions we wish to answer
are as follows:

(i) Which Gaussian-distributed variable is better for measuring
the growth rate, magnitude fluctuations, §m (equations 14 and 15), or
peculiar velocities obtained with the WF15 estimator (equation 12).

(i1) What is the maximum k-value, k,,.x, we can use when includ-
ing a free parameter for non-linear RSD? When gridding the data,
what combination of ,,,, and grid size returns unbiased constraints?

(iii) Does the marginalization over the zero-point change the
constraints?

These questions will be addressed in this section. We begin our
tests using the §m variable as this was shown to return unbiased fits
to 6dFGSv data by Johnson et al. (2014), and identify the method
we will use to include non-linear information in our fits to the
data. We then try fitting the velocity power spectrum using the
WF15 estimator before finally checking for systematic effects asso-
ciated with not marginalizing over the zero-point. As explained in
Section. 2.2, we assign errors to our simulations based on the data
with and without the correction for Malmquist bias. We find that
the differences between the mock results with these two different
error assignments are negligible, and so only present the case for
Malmgquist bias corrected measurement errors in this section.

4.1 Fitting to non-linear scales

We simultaneously fit the eight mocks for a variety of gridsizes and
values of kyx, using magnitude fluctuations as our variable, assum-
ing the true input cosmology and marginalizing over the zero-point.
In each case we treat the mocks as independent and evaluate the joint
likelihood across all eight mocks between ki, = 0.007 A Mpc~! and
kmax- As we are treating the mocks as independent, the marginalized
constraints are the same as fitting each mock individually and aver-
aging. However, this is not true for the un-marginalized constraints.
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Figure 6. Growth rate constraints from fits to the SURFS mocks for a
variety of grid sizes and kmax values. Different symbols/colours indicate
different gridsizes. The horizontal dashed line shows the correct value of
fog based on the input cosmology of the SURFS simulations. Values of
kmax = [0.1, 0.125, 0.15, 0.175, 0.2] were used in the fits, the horizontal
displacement of the points from these values is for clarity only.

Instead, combining the fits from individual mocks would require
re-weighting the chain from a given mock based on the individual
likelihoods from the seven other mocks. This would then have to be
performed for each mock in turn, and hence would be computation-
ally demanding. Furthermore, the results of this procedure are only
robust if the parameter space is sufficiently sampled by the eight
individual likelihoods.

The results are collated in Fig. 6. We find that the fits without
gridding or with grid scales of 10 and 15/~ Mpc are consistently
biased, and become more so as we go to higher k., and include
more non-linear information in our fits. The bias is slightly worse
for smaller grid sizes, but the results with both the grid sizes and
without gridding are similar as in these cases a majority of cells
contain a single galaxy and the data is smoothed by only a small
amount. We find that smoothing on a grid size of 20 h~! Mpc is
required to return unbiased constraints, and find a similar trend
in the bias as a function of kp,,. Overall, with this gridsize, we
choose a value of k. = 0.152Mpc™! to fit the data as this has a
good balance between constraining power and expected systematic
error. In reality, this is not much of a compromise as using a higher
kmax gives an almost negligible improvement in the statistical error
compared to the obvious increase in systematic error for such large
grid sizes. From the fits to the mocks we would expect a systematic
error of ~0.017, much less than the expected statistical error of
~0.075 (calculated based on the statistical error from the mock fits
multiplied by +/8). In other words, we expect a systematic error on
the data of no larger than 0.25¢. The minimum grid size we require
for our fits is larger than that found by Johnson et al. (2014), but
we would expect the 2MTF data, consisting of late-type galaxies
and with a higher number density of nearby galaxies, to be more
susceptible to non-linearities than the early-type galaxy sample of
6dFGSv.

We next test our second method to account for non-linearities,
by including a free parameter to model non-linear RSD rather than
gridding the data. When including this extension to the modelling,
we find that we can obtain unbiased constraints from the SURFS
mocks even when including scales down to ky,, = 0.2 h! Mpc.
This is shown in Fig. 7 where we plot likelihood contours and
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Figure 7. Likelihood contours and 1D marginalized histograms for fits to
the SURFS mocks without gridding and using kpax = 0.2 Mpc~!. Grey
contours/histograms show the results when we do not include any extension
to the modelling to account for non-linearities. The resulting constraints
on fog are biased by 0.065, compared to the correct value for the SURFS
cosmology (blue vertical line). This is larger than the expected statistical
error in the data using this method (0.055, calculated by multiplying the
statistical errors in the mocks by +/8). Including non-linear RSD and the o,
parameter in the modelling (red countours/histograms) corrects for this and
returns unbiased constraints, at the cost of reduced constraining power.

1D marginalized histograms for the joint fits to the mocks without
gridding for k. = 0.22Mpc~! and with and without including
the non-linear RSD modelling. As already shown in Fig. 6, the
constraints without gridding the data are biased by 0.065, which is
larger than the expected statistical error in the data using this method
(0.055, calculated as previously). Including the model extension
instead returns unbiased constraints. The cost of this is reduced
constraining power due to degeneracy between fog and the non-
linear RSD parameter o, which increases the error on the former
from 5 per cent to 8 per cent in our fits to the mocks. In both cases
we find consistent values for o,, both of which are within the
commonly assumed range of 150-300kms~!. The likelihood for
o, is well situated within our prior range and matches the typical
values for this parameter used in Koda et al. (2014) and Howlett
et al. (2017).

4.2 Using peculiar velocities rather than magnitude
fluctuations

We have identified the regime in which we are able to recover unbi-
ased fits to the mocks using the §m variable. We next look at whether
the WF15 estimator of the peculiar velocity can be used instead to
return similar results. In doing this we are effectively converting the
2MTF data from log-distance ratios to peculiar velocities to match
the original Gaussian theory for the covariance matrix (equation 7),
as opposed to changing the variable used in the theory from peculiar
velocities to log-distance ratios (equation 15) to match the 2MTF
data.
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Figure 8. Likelihood contours and 1D marginalized histograms for fits
to the SURFS mocks using the dm variable and the peculiar velocity es-
timated using the WF15 peculiar velocity estimator (grey and red con-
tours/histograms, respectively). In both cases the data are gridded using
L=20h""! Mpc and fitted with kpax = 0.1 ! Mpc. The correct value for
forg based on our fiducial cosmology is shown as the blue vertical line. Both
methods return good results, with the WF15 estimator biased by only 0.013
compared to an expected statistical error on the data of 0.082. However we
find that the §m variable performs consistently better, being unbiased for the
above case and closer to the true value for all k. tested.

Reproducing the fits using a grid size of 204! Mpc, we find
that using the WF15 estimator or the 6m variable gives similar con-
straints, showing the same trend of increasing bias with increasing
kmax. However we do find all the values of fog to be slightly low
compared to the §m variable. This shift is small but systemic, occur-
ring even for kpa, = 0.1 AMpc~!, which was previously unbiased.
This case is shown in Fig. 8. Using the WF15 PV estimator we
find a shift in the best-fitting value (and expected statistical error
in the data) of 0.013 (0.082) and 0.027 (0.072) for ky.x = 0.1 and
0.15 hMpc~!, respectively. This is compared to 0.001 (0.084) and
0.017 (0.075) for the same fits using the §m variable. Hence we
conclude that whilst the WF15 estimator does not return particu-
larly biased results, its performance on the 2MTF data is not quite
as good as using dm.

We can use the mock catalogues to take a closer look at how the
WF15 estimator behaves and if there is an obvious cause for this
small systematic shift by comparing the known PVs of the galaxies
in the mocks against those calculated using the log-distance ratio
and the WF15 estimator. Fig. 9 plots the true PV of each mock
galaxy against the estimated PV. We find that the WF15 estimator
generally does very well, however it is not perfect, overestimating
and underestimating large positive and negative peculiar velocities,
respectively. Unfortunately, how this translates to the small offset
in fog seen in our fits is not clear. We expect the value of fog to be
sensitive to the full distribution of velocities, such that underesti-
mating the width of this distribution would return a low value of fo.
Looking at the mocks, whilst the mean velocity is offset slightly,
the width of this distribution is still very well recovered and so this
does not provide an explanation for the fo g discrepancy.
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Figure 9. Plots comparing the true PVs measured from all of our mock
catalogues against the PVs estimated using the WF15 estimator (equation 12)
and the log-distance ratio of each galaxy in the mocks. The top panel shows
the relationship between these two velocities, with the galaxies binned for
clarity and the colour of each point representing the number of galaxies in
that bin. The solid black line is the 1:1 relationship we would expect to
recover if the WF15 estimator returned the true PV. Instead we find some
deviation from this line; large positive PVs are generally overestimated,
whilst large negative PVs are underestimated. In the lower panel we plot a
histogram of the difference between the true PV and the PV estimated with
the WF15 estimator, which in the majority of cases are very small. There is
no obvious link between the estimated velocities and a systematically low
value of fog; the WF15 estimator still recovers the width of the distribution
of PVs well.

To conclude, we find nothing in the behaviour of this estimator
to suggest it should return a value of fog biased low. Whilst the
WF15 estimator is sub-optimal compared to using §m for measur-
ing the velocity power spectrum in the 2MTF data, it is still gen-
erally unbiased and it is unclear whether other observables using
the 2MTF measurements, such as the bulk flow, or velocity power
spectrum measurements using other data sets, would find similar
results. Hence the choice of variable for a given data set remains
one largely of convenience; using the WF15 estimator, particularly
in bulk flow analyses, allows for a more intuitive understanding of
the data than working in terms of magnitude fluctuations. These
tests should be revisited for data sets with more constraining power
to ensure that this estimator remains unbiased.

4.3 Zero-point offsets

Having decided on the variable and models we will use to fit the
2MTF data, we check whether our results are affected by system-
atics in the data and modelling. We fit the mocks with the same
two methods identified above (gridded and ungridded with RSD
modelling), but without marginalizing over the effect of a velocity
monopole and find negligible differences in the constraints. This
corroborates the result of Howlett et al. (2017) and indicates that
any systematic error in the velocity power spectrum associated with
an offset in the zero-point is negligible compared to the measure-
ment errors. Similar results were found by Johnson et al. (2014) in
their fits to the 6dFGSv data.

5 RESULTS

Having tested and finalized our fitting method in the previous sec-
tion we now turn to fitting the 2MTF data. All our constraints
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Table 2. Constraints on the growth rate, fog, non-linear velocity dispersion, o, and non-linear RSD parameter o, from fitting the velocity power spectrum in
the 2MTF data for two different cosmologies, using the two different methods verified in Section 4, and for the three photometric bands and the ‘minimum

error’ measurement separately.

Cosmology Method 2MTF data fos o,(kms™!) o.(h~! Mpc)
Fiducial (Planck-based) Grid = 20 A~ Mpc, kinax = 0.15 hMpc ™! K band 0.52470:357 338702 -
H band 0.52270:007 32571168 -
J band 0.48710:0%3 <254 -
‘Minimum error’ 0.491 fgggg 254332 -
No grid, kmax = 0.20 s Mpc~!, RSD K band 0.49010:340 186138 <7.96
H band 0.528 1086 21372 <6.87
Jband 0.53179% 19213 <7.56
‘Minimum error’ 0.505f8:8§3 196f§§ <8.49
WMAP-based Grid = 201~ Mpe, kmax = 0.15 2 Mpc™! ‘Minimum error’ 0.46810:089 <342 -
No grid, kmax = 0.20 A Mpc~!, RSD ‘Minimum error’ 0.47370:0% 192137 <7.76
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Figure 10. Likelihood and 1D marginalized constraints from fits to the
2MTF ‘minimum error’ distances for our fiducial cosmology and using the
methods tested throughout Section 4. Our fits using the gridding (black) and
non-linear RSD methods (red) are consistent, and in good agreement with
the predictions of GR (vertical green line), though with a slight preference
for higher growth rates.

are summarized in Table 2. We plot the ‘minimum error’ con-
straints for our fiducial cosmology and for both of our fitting
methods in Fig. 10. For our fiducial fitting methodology we ul-
timately obtain a measurement of foy(z = 0) = 0.505705%, a
~16 per cent measurement of the growth rate. A comparison of
this result with other measurements of the growth rate is given in
Section 6.

In more detail, all our fits are performed using the magnitude fluc-
tuation variable, m and marginalizing over any velocity monopole.
As with the mock results, we find negligible difference between
the results using data with or without the correction or Malmquist
bias, so only present results for the former here. As described in
Section2.1.1, we use 4o -clipping, fit the K-, H- and J-band distances

separately, and also look at the case where we take the measure-
ment with the smallest error for each galaxy. Our results for the
three photometric bands and the ‘minimum error’ measurements
are all consistent. We also find consistent results using both of our
fitting methods: gridding the data on scales of 20 4~! Mpc and fitting
t0 kmax = 0.15 A Mpc~'; and fitting the data without any gridding
using kpmax = O.ZOhMpc*l and marginalizing over the effects of
non-linear RSD. Neither method produces consistently higher or
lower values of fo g in the data, indicating both of these methods are
robust. When gridding the data, the constraints on the non-linear
velocity dispersion are considerably weaker than when we use our
non-linear RSD method as we are smoothing out information on
scales where we could constrain this, but in all cases we find values
consistent with those found in the mock catalogues and with the
typical expectations of 150-300kms~".

We find no strong preference for non-linear RSD damping in
the 2MTF data. The maximum likelihood values for o, are all
consistent with zero, and the growth rate constraints are no weaker
when we marginalize over this than for the gridding method. That
is not to say that including this parameter is unnecessary; from our
tests on the mocks we know neglecting to marginalize over it can
bias results. Rather, the 2MTF data is too noisy on non-linear scales
to constrain this parameter. Note that the mock constraints on o,
in Section 4 are from fitting all eight mocks simultaneously which
gives significantly more constraining power than would be expected
in the data, so the fact we constrain this parameter in Section 4 does
not necessarily indicate we would expect to constrain it in the data.

In obtaining our constraints using the 2MTF data we have to
assume some underlying fiducial cosmology, to both generate our
model velocity power spectrum and convert each galaxies posi-
tion into Cartesian coordinates. To test the dependence of our re-
sults on the choice of fiducial cosmology we re-fit the data using
a cosmology based on the results of WMAP (Bennett et al. 2013).
This cosmology has the parameters 2, = 0.273, Q, = 0.0456,
Hy=70.5kms™! Mpc_l, ny = 0.96 and oy = 0.812. The expected
value of the normalized growth rate, under the assumption of GR,
is fog = 0.398. Our measurements for this cosmological model are
also shown in Table 2, and will be compared to the prediction of
GR in Section 5.1.

When we fit the data using the WMAP cosmology we do find
some evidence that the choice of cosmology impacts the fog con-
straints. However, this change can be understood by comparing the
different velocity divergence power spectra for the two cosmologies
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Figure 11. A plot of the velocity divergence power spectra (multiplied by
k to highlight the large-scale differences) for the two cosmological models
used in this work: our fiducial, Planck-based model (solid black line) and
a WMAP-based cosmology (dashed red line). The ratio of the two power
spectra is shown in the lower panel. The vertical dotted lines show k = 0.15
and 0.2 hMpc ™!, the smallest scales we fit against. The WMAP cosmology
has more power on larger scales and less non-linear power, however the
2MTF data is mainly sensitive to linear scales where the difference between
the cosmologies is approximately constant. Hence the increase in linear
power in the WMAP cosmology can be counteracted with a lower value of
fog to give similar velocity power spectra.

in Fig. 11, and by looking at the usual parametrization of the growth
rate f = Q! (Linder & Cahn 2007). The larger value of ., causes
an decrease in the amplitude of the power spectrum on linear scales
where we have the most constraining power, but the corresponding
larger value of fog actually means that the resultant velocity power
spectra are quite similar. Or, in other words, for a measured velocity
power spectrum, such as that from the 2MTF data, changing the
cosmology is effectively the same as changing the amplitude of the
velocity divergence power spectrum, which can be compensated
for by changing the growth rate, and so we measure a lower value
of fog if we lower the value of €2,,. This is not generally true, as
changing the cosmology also changes the shape of the velocity di-
vergence power spectrum, but the weak constraining power of the
2MTF data on non-linear scales means that it is largely immune to
this effect.

Overall, because the change in fog when using the wrong cos-
mology can be partially explained by the change in €2,,, the resultant
value of y and the consistency check of GR will not be biased as
significantly as fo'g. As the change in the growth rate is still <0.50,
we hence find the 2MTF constraints to be robust to the choice of
fiducial cosmology. In the next section we will use the fog con-
straints to measure y itself and show that these are consistent for
both cosmologies. None the less, this raises the point that other
analyses, past or future, should carefully check the impact of as-
suming a fixed cosmological model on their measurements of the
growth rate. Other data sets more sensitive to the actual shape of the
velocity divergence power spectrum may suffer from this source of
systematic error.

Based on the above considerations, and the fact that all our fits
are ultimately consistent, we choose as our quoted constraint the fits
using our fiducial cosmology with the non-linear RSD modelling
and ‘minimum error’ 2MTF measurements. In this case we atrive

at our main result of fog(z = 0) = 0.50570-5%.

5.1 Consistency with GR: y constraints

Using our growth rate constraints we also perform a consistency
check of GR by measuring the y parameter. We use the full likeli-
hood for our ‘minimum error’ fits using the non-linear RSD mod-
elling without gridding and for the two different cosmologies in
combination with the publicly available Planck® (Planck Collabo-
ration XIII 2016) and WMAP9® (Hinshaw et al. 2013) likelihood
chains. We use the method detailed in Howlett et al. (2015) and
at each likelihood evaluation we randomly sample from the CMB
chain and randomly choose a value 0 < y < 2. The CMB chain pro-
vides values for 2, and og(z = 0). However, the CMB is actually
sensitive to the value og(z*) where z* is the redshift of recombina-
tion, and the value of og(z = 0) in the CMB chain is derived from
this assuming GR. Hence we scale each value of og(z = 0) back
to z* using the linear growth factor for GR, then calculate the cor-
responding value of o (z = 0) under the new value of y using the
correct growth factor. Even though we have fixed 2., for our 2MTF
fits, the cosmologies used are very close to the maximum likelihood
values for the chains we use. This means that we have simply ne-
glected any additional information that the 2MTF data might give
us about €2,,, which is perfectly valid as the combined likelihood
for the background cosmology will be completely dominated by the
CMB constraints anyway.

We also consider the y constraints when we combine our fog
measurement with the results from the tomographic weak lensing
analysis of the Kilo Degree Survey (KiDS; Hildebrandt et al. 2017).
The constraints on €2,, and o (in particular through the combina-
tion 0g+/€2p,/0.3) are in ~2.3¢ tension with the results from Planck
Collaboration XIII (2016); hence, it is interesting to study the con-
sistency of their results and ours with GR. We obtain constraints
on y using the same method as for the Planck and WMAP chains;’
however, as the KiDS results are sensitive to the present day value
of og (unlike the CMB where o is extrapolated to the present day
assuming GR) we do not correct the value of og to account for
the different values of y. One important caveat to this is that the
KiDS results provide much weaker constraints on 2,,, than Planck
or WMAPY, so the effects of using a fixed value of 2, in our fits to
the 2MTF data may be more important. We choose to use the 2MTF
constraints given the WMAP-based input cosmology (i.e. the last
line in Table 2) as this is closer to the maximum likelihood cosmol-
ogy for the KiDS data and should reduce any potential biases, but
note that a rigorous combination of these two data sets should allow
for the fact that the 2MTF data may provide additional information
on 2, beyond that available with just KiDS.

The 2D likelihood in the €2,—y plane is shown in Fig. 12. We
find marginalized values of y = 0.4570'1% for both the WMAP9 and
Planck cosmologies and y = 0.38f8::§ for the 2MTF results assum-
ing a WMAP-based input cosmology combined with the results of
KiDS. That the combined 2MTF and CMB results using the two
cosmologies are so similar proves that although the use of different
cosmologies changes the values of fos measured from the data, this
is mainly due to the change in €2,, and is hence accounted for when
we calculate y. The combination of our 2MTF result with the KiDS

5 For Planck we use the base_plikHM_TTTEEE_lowTEB_lensing chain
found at https://wiki.cosmos.esa.int/planckpla/index.php/Cosmological _
Parameters

®For WMAP9 we use the ACDM MCMC chain found at https:/
lambda.gsfc.nasa.gov/product/map/drS/params/lcdm_wmap9.cfm

7 The KiDS chains can be found at http:/kids.strw.leidenuniv.nl/cosmic
shear2016.php
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Figure 12. 1o and 20 likelihood contours for 2, and y from the combi-
nation of 2MTF ‘minimum error’ growth rate measurements with Planck
(blue), WMAP9 (red) and KiDS (green) data. In all cases we use the ZMTF
measurements without gridding and including non-linear RSD modelling.
For combining with Planck we use the 2MTF result for a Planck-based
fiducial cosmology (i.e. the eighth row in Table 2), whereas for combining
with WMAP9 or KiDS we use the 2MTF results for a WMAP-based fiducial
cosmology (the last row in Table 2), as this is closer the maximum likeli-
hood cosmology for these two data sets. The dashed horizontal line is the
prediction from GR. All cases are self-consistent and in good agreement
with GR, though with a preference for lower y.
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data generally prefers lower 2, and y than the combination with
CMB data, although the error bars are large. In general, we conclude
that all three values are consistent with the predictions of GR (y ~
0.55) within ~1.50, although with a preference for lower y .

5.2 Scale-dependent constraints

On top of measuring a scale-free value for the growth rate, we can
model the velocity power spectrum is discrete k-bins to obtain scale-
dependent constraints, as was done by both Macaulay et al. (2012)
and Johnson et al. (2014). GR predicts a scale-free growth rate,
so any observed scale-dependence would point to modifications to
gravity. Including non-linear RSD damping in our model will pri-
marily affect the constraints on small-scales, with o, being strongly
degenerate with the growth rate in this regime. Hence, for our scale-
dependent constraints we decide to use the gridding method tested
and verified in Section 4 and which was already found to produce
consistent measurements of the growth rate using the 2MTF data.
Our scale-dependent constraints are obtained by fitting the veloc-
ity power spectrum in four k-ranges. We also look at the case where
we use only two bins. The likelihood contours and 1D marginalized
histograms for fits to the ‘minimum error’ 2MTF data are shown in
Fig. 13. The exact k-bins and fo g(k, z = 0) constraints are given in
Table 3. The constraints are generally consistent with the expected
value for our fiducial cosmology, with some small preference for
a larger than expected growth rate in our second k-bin when using
four. We find no evidence for an excess of power on scales larger
than this, and our results using two bins are also fully consistent
with GR. The maximum likelihood and 1o errors for the four-bin
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Figure 13. Likelihood contours and 1D marginalized histograms from scale-dependent fits to the 2MTF ‘minimum error’ distances for our fiducial cosmological
model. We fit the velocity power spectrum in four k-ranges: k; = 0.007-0.025 h Mpc ™', ky = 0.025-0.055 h Mpc ', k3 = 0.055-0.105 h Mpc " and k4 = 0.105-
0.150 s Mpc~! in the left plot and two k-ranges: k; = 0.007-0.055 hMpc~! and k» = 0.055-0.150 A Mpc =" in the right plot. In all cases we find results that
are consistent with the predictions on GR (green horizontal and vertical lines) although with a slight preference for larger growth rates in our k»-bin and k;-bin
when using four and two bins, respectively. These are consistent with statistical fluctuations and an excess of power is not seen on any larger scales when using

four bins.
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Table 3. Scale-dependent constraints on the
growth rate, fog(k) at z = 0 from fitting the
velocity power spectrum of the ‘minimum er-
ror’ 2MTF data in different k-bins. Columns
give the upper and lower limits of each bin
and the corresponding fo'g measurement. The
upper and lower segments of the table give
the case for two and four k-bins, respectively.

k-range (h Mpc’l) fos(k,z=10)

0.007-0.055 05490193
0.161
0.055-0.150 0.399%1%
0.360
0.007-0.025 0.498% 5%,
0.268
0.025-0.055 0.610%)3%
0.242
0.055-0.105 0.373%)34
0.251
0.105-0.150 0.4397%01
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Figure 14. Best-fitting and 1o errors on the growth rate in four k-bins and
for the three photometric bands and the ‘minimum error’ distances. In the top
panel we plot the growth rate constraints multiplied by our fiducial velocity
divergence power spectrum. The expectation assuming GR is plotted as the
dashed line. Our fits are sensitive to the power and growth rate averaged
across each bin. The corresponding GR expectation is shown as a solid
horizontal line. The position of the points relative to this line is arbitrary. In
the lower panel we plot the constraints on the growth rate itself, alongside
the scale-independent prediction from GR (dashed line). In all cases we find
results statistically consistent with GR.

fit, using the ‘minimum error’ 2MTF data and for the 3 individual
photometric bands, are also compared to our fiducial cosmology
in Fig. 14, where we plot the velocity divergence power spectrum
for our fiducial cosmology multiplied by the expected growth rate.
We find the preference for larger power in the k,-bin in all of our
photometric bands, but this remains consistent with statistical fluc-
tuations, and again there is no evidence in any of the bands for such
a preference on larger scales.

6 DISCUSSION AND CONCLUSION

In this work we have presented measurements of the velocity power
spectrum using a set of 2062 measured peculiar velocities in the
completed 2MASS Tully Fisher Survey. We have performed a rig-
orous test of our fitting methodology using a set of eight realistic
mock 2MTF surveys. We identify the regimes in which our method
returns unbiased fits, and introduce a greater degree of flexibility

in our modelling than was used in previous studies. This is done
by accounting for and marginalizing over the effects of non-linear
RSD. Our method is able to produce unbiased fits to smaller scales
than is possible otherwise and than was used by previous studies,
and without the need for gridding or smoothing the data.

We test two different Gaussian distributed variables that can be
used to estimate the velocity power spectrum: magnitude fluctua-
tions, &,,, which was the variable adopted in Johnson et al. (2014),
and which we also find produces reliable fits to the 2MTF data;
and the peculiar velocity estimator of Watkins & Feldman (2015).
We find that this latter estimator is also generally unbiased but does
seem to slightly underestimate the value of fo'g found in the mocks
regardless of the scales fit against. Comparing the true and esti-
mated peculiar velocities in the mocks reveals no obvious cause for
this and this discrepancy is not statistically significant. We decide
to use the ém variable in our fits as we find it to be superior for
the 2MTF data. Whether this estimator is none the less effective,
or even better, for estimating the bulk flow in the 2MTF data or for
use on other data sets remains an open question.

We verify that our fits are robust to the effects of a change in
cosmology or a velocity monopole. That said, this may only be
true because the constraining power of 2MTF is sufficiently weak.
For future PV surveys, such as Taipan (da Cunha et al. 2017) or
WALLABY (Johnston et al. 2008), with much greater constraining
power we may have to marginalize over the effects of different
cosmological models on the growth rate constraints.

Overall, we find best-fitting scale-dependent constraints on the
growth rate of structure at redshift zero that are consistent with a
scale-independent growth rate and the prediction of GR, when us-
ing both two and four k-bins. Assuming scale-independence we find
a value fog(z =0) = 0.505f8:8§3, also consistent with the predic-
tions of GR. This is a ~16 per cent measurement of the growth rate,
comparable to the constraints using the 6dFGSv sample of ~8800
galaxies (Johnson et al. 2014; ~15 per cent) and the constraints us-
ing the 6dFGRS (Beutler et al. 2012; ~13 per cent), which contains
over 100000 galaxies. The fact that we obtain comparable results
using a smaller number of galaxies is a result of the higher number
density of local objects and better distance measurement compared
to 6dFGSyv, and the fact that PV surveys are independent of the
effects of galaxy bias. Combining our growth rate measurements
with CMB data from Planck or WMAP9 we find y = 0.45701% a
~25 per cent measurement, consistent with GR. Combining with
weak lensing measurements from KiDS we find, y = 0.387012,
which is consistent with GR at the level of ~1.50.

The fact that our constraints on y are only a factor of two larger
than state-of-the-art constraints combining a number of large-scale
structure, CMB and Type la supernovae measurements (Mueller
et al. 2016) highlights the strong tests of gravity that can be made
using PV surveys, both because of their independence from galaxy
bias and their low redshift. For future surveys containing larger
numbers of both redshifts and velocities, such as that planned with
WALLABY (Duffy et al. 2012; Koribalski 2012), these properties
will enable growth rate measurements comparable to, and even
surpassing, those that can be made using traditional Large-Scale
Structure surveys (Howlett et al. 2017).
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